Propalaeoryx Stromer 1926 (Ruminantia, Pecora, Giraffomorpha) revisited: systematics and phylogeny of an African palaeomerycid

1Israel M. SÁNCHEZ, 2Jorge MORALES, 3Juan López CANTALAPIEDRA, 4Victoria QUIRALTE & 5Martin PICKFORD

1Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columns s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain, (e-mail: micromeryx@gmail.com).
2Departamento de Paleobiología, Museo Nacional de Ciencias Naturales–CSIC, C/ José Gutiérrez Abascal, 2, 28006 Madrid, Spain, (e-mail: mcnm166@mn.cn.es).
3Departamento de Ciencias de la Vida, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain, (e-mail: jlopezcant@gmail.com).
4Museo Geominero (IGME), C/ Ríos Rosas, 23, 28003, Madrid (España), (e-mail: mv.quiralte@igme.es).
5 Sorbonne Universités (CR2P, MNHN, CNRS, UPMC - Paris VI) 8, rue Buffon, 75005, Paris, France, (e-mail: martin.pickford@mnhn.fr).

Abstract: We describe new mandibular and dental material of *Propalaeoryx stromeri* from Langental (early Miocene, Sperrgebiet, Namibia), and re-describe the cranial anatomy of this genus of African giraffomorphs. The occipital and nuchal anatomy of the two *Propalaeoryx* species are described and emended differential diagnoses are presented. Several cranial and postcranial characters are crucial for understanding the position of *Propalaeoryx* as a basal member of the Palaeomerycoidea within the Giraffomorpha. We define the clade Palaeomerycoidea as the least inclusive clade of giraffomorphs containing *Triceromeryx* and *Propalaeoryx*. Finally, the phylogenetic position of *Propalaeoryx* unveils a putative early African-Eurasian vicariance event among basal palaeomerycoids that probably took place around the Oligo-Miocene boundary, a time when other ruminant lineages were also splitting.

Key Words: Ruminants; Early Miocene; Namibia; Sperrgebiet; Evolution; Phylogeny.

Introduction

Propalaeoryx (Fig. 1) is a genus of African pectorans first described by Stromer (1926) on the basis of dental and postcranial material from Elisabethfeld (early Miocene, Sperrgebiet). Stromer noted the morphological differences between *Propalaeoryx* and extinct and extant ruminants, but he did not elaborate a clear hypothesis of relationship with any of them. He described *Propalaeoryx* as a ruminant as large as a fallow deer (*Dama dama*) with premolar series as long as the molar series and wrinkled enamel in the lower molars (Stromer, 1926). On the basis of new material collected in the Sperrgebiet by the Namibia Palaeontology Expeditions, Morales et al. (2008) described abundant material attributed to the type species *P. austroafricanus* and to a new species *P. stromeri*, which differed from the former in being more microdont (smaller teeth and larger postcranial skeleton) and with a more derived lower dentition (flatter cuspids, higher crowns, less developed stylids) besides another characters (Morales et al. 2008). The authors also described much of the postcranial skeleton of *Propalaeoryx* highlighting several characters in the navicular-cuboid in the tarsus that later proved relevant for resolving pectoran phylogeny at a large-clade level (see Sánchez et al. 2015). Morales et al. (2008) referred to *Propalaeoryx* as a probably hornless pecoran (no cranial appendages or frontal bone fragments have been found) with large sabre-like upper canines in the
males. These canines are of the moschid-type a very conspicuous morphology among pecorans (Sánchez et al. 2010a). Morales et al. (2008) attributed Propalaeoryx to the Climacoceratidae, a Miocene African group of giraffoids also including forms such as Orangemeryx and Climacoceras. However, they did not offer a phylogenetic analysis. Recently, the total-evidence tip-dating phylogenetic analysis of Sánchez et al. (2015) recovered Propalaeoryx as the sister-group of the Palaeomerycidae within the Giraffomorpha as the basal offshoot of the Palaeomerycoidea, thus rejecting the climacoceratid hypothesis and offering a new and more complex evolutionary scenario for the large clade of pecorans of which giraffes (Giraffa and Okapia) are the only living representatives.

Figure 1. Reconstruction of an adult male of Propalaeoryx stromeri. Illustration by Israel M. Sánchez.

In this paper we aim a) to describe new Propalaeoryx austroafricanus material from Langental, b) to describe new cranial characters that differentiate the two species of Propalaeoryx, offering emended diagnoses in detail, c) to describe both the cranial and postcranial morphological characters that unite Propalaeoryx with the Palaeomerycidae and d) to discuss the evolutionary hypotheses derived from the phylogenetic position of Propalaeoryx as published by Sánchez et al. (2015).

Material and methods

Material. In this work we studied Propalaeoryx austroafricanus mandibular and cranial material from Elisabethfeld and P. stromeri cranial material from Langental. These fossils are curated by the Geological Survey of Namibia (Windhoek, Namibia) and are currently on study loan in the MNCN-CSIC (Madrid, Spain).

Abbreviations. EF - Elisabethfeld; LT - Langental; GSN - Geological Survey of Namibia; MNCN-CSIC - Museo Nacional de Ciencias Naturales-CSIC (Madrid, Spain).
Emended diagnosis.- Palaeomerycoid giraffomorph with deep rectilinear groove behind the temporal fossa; enlarged upper canines of moschid-type in males; presence of lateral notch in the facet for the semilunate in the radius; distally closed metatarsal sulcus; small metatarsal tuberosity; semicircular P4/ with flat cones; lower molars with flattened cusps, especially the lingual ones. Based on Sánchez et al. (2015).

Type species.- Propalaeoryx austroafricanus Stromer, 1926

Additional species in the genus.- Propalaeoryx stromeri Morales, Soria & Pickford, 2008

Emended diagnosis.- Propalaeoryx with ventrally narrowed foramen magnum that displays an almost closed state; slightly developed posterior basioccipital tubercles anterior to the occipital condyles; presence of deep lateral fossettes over the occipital condyles in the nuchal plane.

Description
We restudied the cranial (occipital) fragment GSN EF 34’01, which shows some important, and so far undescribed, features. The most conspicuous character is the presence of a ventrally closed foramen magnum similar to that observed in the Prolibytheriidae (see e.g. Danowitz et al. 2016). However, in contrast to the Prolibytherium condition, the fusion in P. austroafricanus only affects the inner surface of the condyles. In the outer surface the fusion is not complete and a relatively wide canal appears (see Fig. 2, I). In addition to this, the nuchal plane in Propalaeoryx austroafricanus is more convex than in P. stromeri, and a pair of well-developed fossettes is present over each occipital condyle. Finally, the posterior basioccipital tubercles are relatively weak (Fig. 2, H-I).

Species Propalaeoryx stromeri Morales, Soria & Pickford, 2008

New material.- GSN LT 37’08 + LT 47’06, right hemi-mandible with p/2-m/3 (Fig. 2, A-C).

Emended diagnosis.- In Morales et al. (2008) plus: loss of p/1; ventrally wide foramen magnum with open U-shaped morphology; strongly developed and quadrangular posterior basioccipital tubercles anterior to the occipital condyles; presence of shallow, weakly expressed lateral fossettes over the occipital condyles in the nuchal plane.

Differential diagnosis.- Differs from the type species of the genus in the characters listed by Morales et al. (2008) plus: more ventrally open foramen magnum; stronger and quadrangular-shaped posterior basioccipital tuberosities; lack of deep fossettes.
over the occipital condyles in the nuchal plane.

Description

We here describe a new hemi-mandible (GSN LT 37°08' + LT 47°06'; Fig. 2, A-C) with the complete lower tooth series and re-describe the occipital fragment GSN LT 194°96a (Fig. 2, D-G).

![Figure 2](Image)

Figure 2. A, *Propalaeoryx stromeri* GSN LT 37°08' + LT 47°06', right hemi-mandible with p/2-m/3 in buccal view; B, *Propalaeoryx stromeri* GSN LT 37°08' + LT 47°06', right hemi-mandible with p/2-m/3 in lingual view; C, *Propalaeoryx stromeri* GSN LT 37°08' + LT 47°06', right hemi-mandible with p/2-m/3 in occlusal view; D, *Propalaeoryx stromeri* GSN LT 194°96a, skull fragment, in left lateral view; E, *Propalaeoryx stromeri* GSN LT 194°96a, skull fragment, in right lateral view; F, *Propalaeoryx stromeri* LT 194°96a, skull fragment, in caudal view; G, *Propalaeoryx stromeri* GSN LT 194°96a, skull fragment, in ventral view; H, *Propalaeoryx austroafricanus* GSN EF 34°01, skull fragment, in caudal view; I, *Propalaeoryx austroafricanus* GSN EF 34°01, skull fragment, in ventral view. **Abbreviation:** OGr, Occipital groove.

Mandible and adult lower dentition. As is usual for the genus, the diastema is short. Most of the ventral border of the mandible is missing, but the anterior portion (diastema to the m/1) is dorso-ventrally narrow. There is no p/1. The p/2 is simple with a single anterior stylid. Both the p/3 and p/4 have an anterior stylid and anterior conid. In both p/2 and p/3 the lingual structures are very simple. The postero-lingual conid is bifurcate in the p/3 and does not reach the lingual wall. In the p/4 the anterior valley is open lingually, the cristid obliqua contacts the mesio-lingual conid, which has a very short antero-lingual cristid and a moderately long postero-lingual cristid that almost closes the medial valley. The molars have more or less aligned flattish lingual cusps with relatively high cristids. The metastylid is well-developed. The m/1 is subequal in size to the m/2. The molars do not present a *Palaeomeryx*-fold. The molars are distally open (no contact between the post-entocristid and the post-hypocristid). The anterior cingulid is moderate to strong from m/1 to m/3, being more developed at the protoconid. The ectostylid increases in size from m/1 to m/3. The third lobe of the m/3 is mono-cuspidate, with a robust hypo-conulid.
Occipital. Dorsally, a well-developed sagittal crest meets a massive and triangular external occipital protuberance that extends caudally over the nuchal plane. Both the nuchal crest and the external occipital crest are well-developed. Two elliptical shallow fossae extend below the external occipital crest, in the nuchal plane, creating a marked convexity. However this morphology is not as developed as in the nuchal fossa of palaeomerycids (see Sánchez et al. 2015). Caudally to the nuchal crest and next to it, just behind the temporal fossa, there is a deep dorso-ventral rectilinear groove on each side of the skull. This groove of unknown function is also found in palaeomerycids and resembles a robust superficial vascular canal (Sánchez et al. 2015). Very shallow fossettes appear in the nuchal plane, immediately above the occipital condyles. The foramen magnum is wide, ventrally open as is the norm in pectorans with the exception of prolibytheriid giraffoids (Sánchez et al. 2010b; Danowitz et al. 2016). The foramen magnum is wide ventrally, showing an open U-shaped morphology. Also, the posterior basioccipital tuberosities anterior to the occipital condyles are strongly developed with a marked quadrangular morphology.

Table 1. Measurements (in mm) of the dentition of the new hemi-mandible GSN LT 37’08 + LT 47’06 (P. stromeri) from Langental, Namibia.

<table>
<thead>
<tr>
<th>Tooth</th>
<th>Mesio-distal length</th>
<th>Bucco-lingual breadth</th>
</tr>
</thead>
<tbody>
<tr>
<td>p/2</td>
<td>8.84</td>
<td>4.26</td>
</tr>
<tr>
<td>p/3</td>
<td>11.19</td>
<td>5.35</td>
</tr>
<tr>
<td>p/4</td>
<td>12.89</td>
<td>6.21</td>
</tr>
<tr>
<td>m/1</td>
<td>14.8</td>
<td>7.87</td>
</tr>
<tr>
<td>m/2</td>
<td>16.07</td>
<td>8.69</td>
</tr>
<tr>
<td>m/3</td>
<td>20.28</td>
<td>8.29</td>
</tr>
</tbody>
</table>

Discussion

The phylogenetic relationships of Propalaeoryx within the Pecora have been subject of debate since its description by Stromer (1926), Arambourg (1933) and Whitworth (1958) described its dentition as cervoid, but some other authors considered Propalaeoryx to be a giraffoid (Janis & Scott, 1987; Gentry, 1994) or more specifically a climacoceratid giraffoid (Morales et al., 1999, 2008). Subsequently, Cote (2010) classified Propalaeoryx as a pecoran incertae sedis, although she admitted that the giraffoid hypothesis was probably the most likely to be valid. However, none of these authors included Propalaeoryx in a phylogenetic analysis. When this analysis was done in a work that attempted to check the phylogenetic relationships of the three-horned palaeomerycids, Propalaeoryx was recovered with very strong branch support as the basal off-shoot of the palaeomerycoid clade within the Giraffomorpha (Sánchez et al. 2015; Fig. 3). Giraffomorphs are the ancient and inclusive clade of crown-pecorans, the only living representatives of which are the giraffes (Giraffa and Okapia). The phylogenetic structure of the Giraffomorpha encompasses two main lineages, Giraffoidea (Prolibytheriidae, Climacoceratidae and Giraffidae; Fig. 3, clade 2) and Palaeomerycoidea (Propalaeoryx plus the Palaeomerycidae - although the European Sardomeryx and Bedenomeryx have recently been recovered as palaeomerycoids by Mennecart et al. 2018 - Fig. 3, clade 1). Even though it has been previously mentioned (Ríos et al. 2017; Mennecart et al. 2018) we explicitly define here the Palaeomerycoidea as the least inclusive clade of giraffomorphs containing Triceromeryx and Propalaeoryx.
Figure 3. Phylogenetic tree of the Pecora, showing the major clades of crown-pecorans (Giraffomorpha, Cervidomorpha and Bovidomorpha), with special emphasis on giraffomorphs and Propalaeoryx. Clade 1: Palaeomerycoidea; Clade 2: Giraffoidea. Based on the tip-dating Bayesian analysis on a combined dataset (morphology + DNA + stratigraphic data) of Sánchez et al. (2015). Notice the position of other Sperrgebiet lower Miocene ruminants such as the diminutive stem-cervidomorph Namibiomeryx and the stem-bovidomorph Sperrgebietomeryx. Both the distribution of the reconstructed morphological character / states for the tip-dating tree, and a description of the tip-dating analysis, are presented in Sánchez et al. (2015).

Thus, although definitely related to giraffes the giraffoid/climacoceratid hypothesis for Propalaeoryx was rejected, and the African genus proved to be more closely related to the Eurasian branch of the Giraffomorpha. This phylogenetic structure of giraffomorphs showed the existence of complex evolutionary and palaeobiogeographical patterns in the evolutionary history of the group (Sánchez et al. 2015). The morphological characters that unite Propalaeoryx with palaeomerycids are the presence of a deep rectilinear groove behind the temporal fossa (as described here in GSN LT 194’96a; see Fig. 2, D-E), enlarged upper canines of moschid-type in males, presence of a lateral notch in the facet for the semilunate in the radius, distally closed metatarsal sulcus, and presence of a small metatarsal tuberosity. Out of these, the most typically palaeomerycid features are the cranial groove and the small metatarsal tuberosity, since these two features are not known in any other pecoran. The upper canines of moschid-type are typical of palaeomerycoids, being absent, as far as we know, in giraffoids. This type of canine is widespread among pecorans (Sánchez et al. 2010a), and is known to have secondarily reappeared in
cervids (e.g. *Hydropotes inermis*). Also, the distally closed metatarsal sulcus is a feature that appears to be homoplastic (parallel) among pecorans. As occurs in moschid bovidomorphs (Sánchez et al. 2010a), giraffomorphs display the two types of condition of the sulcus, open in giraffoids and closed in palaeomerycoids. This phenomenon occurs when the canal for the digital artery is of moschid-type (see Sánchez et al., 2010a for the definition of the states), which means that it is neither superficial nor deep. When these two extreme cases occur (bovid-type and cervid-type), as in derived bovids and cervoids, respectively, the open and closed states become fixed (open in derived bovids and closed in cervoids and bovidomorph antilocaprids; see Sánchez et al. 2010a, 2015). With respect to palaeomerycids, *Propalaeoryx* shows a clear pattern of mosaic evolution, displaying a more derived dentition with a lack of the *Palaeomeryx*-fold and the presence of far more flattened cuspids with higher cristids (Sánchez et al. 2015). However, the presence of p/1 in *P. astrosafricanus* is a curious retention of a primitive feature that is lost in *P. stromeri* and palaeomerycids. Palaeomerycids are characterized by a highly derived and modified nuchal plane, expanded dorsally, with the presence of novelties such as the nuchal fossa and lateral expansions of the nuchal crest that served as attachments for a reinforced pack of head extensor muscles such as the *rectus capitis dorsalis*, *semispinalis capitis* and *rectus capitis dorsalis minor* (Sánchez et al. 2015). *Propalaeoryx stromeri* has a somewhat dorsally expanded nuchal plane that shows well-marked twin attachment areas for the extensor packs. However, the nuchal plane is not heavily modified as in palaeomerycids, and of course no occipital appendages exist.

The main lineages of crown-pecorans apparently experienced a major radiation event about 25 million years ago, when all the major groups containing the living lineages (giraffomorphs, cervidomorphs and crown-bovidomorphs) appeared (see Fig. 3). By this time, the original palaeomerycid stock should have entered Europe and Africa, diverging into two lineages. The Eurasian branch was apparently more successful than the African one, producing a high diversity of palaeomerycids plus some forms recently related to *Propalaeoryx* as basal palaeomerycids, such as *Sardomeryx* and *Bedenomeryx* (Mennecart et al. 2018). The presence of these basal palaeomerycids near the Oligocene - Miocene boundary (Burdigalian) of Europe reinforces the hypothesis of an extensive radiation of giraffomorphs taking place ca 25 Ma.

The two species of *Propalaeoryx* from the Sperrgebiet (*P. astrosafricanus* and *P. stromeri*) have very conspicuous morphological differences in the occipital area of the skull that were not previously described. In the ventral part of the occipital, *P. astrosafricanus* has a narrower foramen magnum, which in fact is almost closed, resembling the *Prolibytherium* condition but not fully closed (Fig. 2, I). The two species of *Propalaeoryx* from the Sperrgebiet (*P. astrosafricanus* and *P. stromeri*) have very conspicuous morphological differences in the occipital area of the skull that were not previously described. In the ventral part of the occipital, *P. astrosafricanus* has a narrower foramen magnum, which in fact is almost closed, resembling the *Prolibytherium* condition but not fully closed (Fig. 2, I). Also, the posterior basioccipital tuberosities are far less developed than in *P. stromeri*. Finally, two well-developed fossettes are present above the occipital condyles in the nuchal plane, and the areas of muscular insertion above the foramen magnum are strong and protruding (Fig. 2, H). In *P. stromeri* the fossettes are almost non-existent and the surface above the foramen magnum is clearly flatter. The basioccipital area of *P. stromeri* is much more similar to that of the palaeomerycids than to that of *P. astrosafricanus*. We cannot discard the possibility that *P. astrosafricanus* and *P. stromeri* belong to different genera, but we need to check this out through a phylogenetic analysis encompassing all published members of the Palaeomerycoidea, including the two Sperrgebiet species of *Propalaeoryx*.

Conclusions

Propalaeoryx has been recovered as a basal offshoot of the Palaeomerycoidea, the branch of the Giraffomorpha that includes the Eurasian Palaeomerycidae. A new and very complete mandibular fossil of *Propalaeoryx stromeri* yields valuable information about the morphology and variability of the species, and increases its
hypodigm. The occipital area in *P. austroafricanus* and *P. stromeri* are strikingly different, with deep contrasts in the morphology of the basioccipital, the ventral part of the foramen magnum and the structure of the nuchal plane. These newly described characters enrich the diagnoses of the species, and a generic difference between the two forms cannot be ruled out. Finally, giraffomorphs probably underwent a strong radiation event at the end of the Oligocene (ca 25 Ma) before dispersing through Eurasia and Africa during the early-middle Miocene.

Acknowledgements

This work was supported by the Spanish Agencia Estatal de Investigación (Ministerio de Economía, Industria y Competitividad, Spanish Government, projects MINECO- CGL2016-76431-P and CGL2015-68333-P and the Research Groups CSIC 641538 and CAM-UCM 910607. We thank the Namibian National Heritage Council, the Geological Survey of Namibia and Namdeb for support and for arranging access to the Sperrgebiet and to fossil collections curated in Windhoek (H. Mocke). Thanks to B. Senut, co-leader of the Namibia Palaeontology Expedition for administrative and logistic input.

References

