Superposed folding at the junction of the inland and coastal belts, Damara Orogen, NW Namibia

Adam C. Maloof
Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, MA 02138, maloof@fas.harvard.edu

Two adjoining dome structures in Neoproterozoic Otavi Group sediments are located at the intersection of the Outjo (inland branch) and Kaoko (coastal branch) fold and thrust belts of the Damara Orogen on the farm Vrede, northwestern Namibia. Systematic mapping of outcrop-scale cleavage and folding relationships has unraveled three temporally distinct folding events in the two dome structures. In present-day coordinates, the first shortening event (D1) produced E-W trending folds. The second contractional phase (D2) developed N-S trending folds. The third shortening episode (D3) featured a renewed production of E-W trending folds. If this chronology of deformation is applied to similarly oriented structures along the inland and coastal belts, a history of ocean closure and the amalgamation of southwestern Gondwanaland can be inferred. Closure of the Adamastor ocean and collision along the Kaoko margin began before closure of the Khomas sea and collision along the inland belt.

Introduction

The Vrede domes are a pair of doubly plunging antiflanks located on Vrede farm, at the junction of the Pan-African age (650-450 Ma) Outjo fold and thrust belt (Northern Zone of the inland branch in Miller (1983)) and Kaoko fold and thrust belt (Central Kaoko Zone of the coastal branch in Miller (1983); Fig. 1). Doming has been recognized as a prevalent feature of the Outjo thrust belt (Frets, 1969; Miller, 1983; Weber et al., 1983) and Swakop zone (Smith, 1965, Barnes and Downing, 1979; Miller, 1983; Kröner, 1984; Oliver, 1995; Fig. 1). Kröner (1984) proposed that late-tectonic, anatexically produced granites intruded and ballooned into preexisting antiflanks in the cover sediments of the Swakop zone, producing domes. Further north in the area of the Vrede domes, the Outjo thrust belt is riddled with post-tectonic granites (520-500 Ma) and the diapir mechanism for dome formation appears plausible. Superposed tectonic folding has also been evoked as a mechanism for doming in the Swakop zone (Smith, 1965) and Outjo thrust belt (Frets, 1969; Miller, 1983). In theory, two orthogonally-oriented fold trains should interact like waves to form basin and dome fold interference patterns (Ramsay, 1958, 1962; Weiss, 1959; Tobisch, 1966; Ghosh, 1970; Watkinson, 1981; Theissen, 1986; Ramsay and Huber, 1987; Lisle et al., 1990). In the Swakop zone, the dearth of outcrop-scale refolded structures has usually led to the adoption of the diapir model (Barnes and Downing, 1979; Kröner, 1984). A third mechanism for dome formation has been proposed for the Swakop zone involving oblique collision and lateral tectonic escape along mid-crustal ductile detachments (Oliver, 1995). This model is probably not applicable to the lower-grade rocks of the Outjo thrust belt.

The Vrede domes are low-grade, thin-skinned structures containing a plethora of outcrop-scale refolded folds and multiply deformed axial-planar cleavages. The goal of this contribution is to deconvolve the refolded folds of the domes into chronologically distinct components of finite strain. Four models are presented to explain the structural evolution of the domes. The chronology of deformation in the domes is then used to speculate on the relative timing of ocean closure along the inland and coastal belts during the amalgamation of southwestern Gondwanaland.

Geologic Setting

The Vrede domes consist of two northeast verging domal antiflanks that are separated by an east-west trending keel-shaped syncline (Fig. 2). The domes owe their ring-like appearance in plan view to a drainage network that follows the weakest Otavi stratigraphy (Ghaub Formation and Lower Ombombo Subgroup siltstones), eroding circular, low-order channels that eventually feed higher order ephemeral streams which drain into the Huab River. The domes are each about 1.5 km wide (east-west), and together they are about 4 km long (north-south).

The domes lie in the Huab River channel, which drains the southwest heel of the Kamanjab Inlier (1.7-2.0 Ga basement; Fig. 1). Cretaceous volcanics related
to the opening of the Atlantic Ocean occur west and south of the Vrede domes and post-tectonic (~500 Ma) granites border them to the southeast (Fig. 1).

Regional Tectonostratigraphy

The Otavi Group is a carbonate-dominated passive-margin succession bordering the southern promontory of the Congo Craton (of which the Kamanjab Inlier is a part). The megasequence records the ~750 Ma breakup of the supercontinent Rodinia, a stable platform with two discrete glacial intervals capped by distinctive Neoproterozoic cap carbonates (Fairchild, 1993; Schmidt and Williams, 1995; Kennedy, 1996; Hoffman et al., 1998a; Kennedy et al., 1998), and the ~550 Ma amalgamation of Gondwanaland (Fig. 3b; Hoffman et al., 1998D). The Otavi Group is underlain by pre-760 Ma Nosib Group syn-rift clastics and a low grade, 2.0-1.7 Ga basement complex. It is overlain by pre-540 Ma Mulden Group foreland basin siliciclastics (Frets, 1969; Hoffman et al., 1998D).

The Otavi passive margin is segmented into basins by transverse basement ridges (Henry et al., 1990). Henry et al. (1990) and Stanistreet et al. (1991) have suggested that much of the early rifting was controlled by large, low-angle detachments that exploited older, Mesoproterozoic structures. The Otavi rocks of the Vrede domes are located south of the Huab Ridge, the southernmost transverse basement ridge, and south of Rockeys Fault (Fig. 1). Henry et al. (1990) proposed that the Rockeys fault is the northernmost extensional detachment and the postulated shelf-slope transition bounding the Otavi platform to the north.

The Stratigraphy of the Vrede domes

In the Vrede domes, the Otavi Group is a 400+ m sequence of carbonates and siliciclastic metasediments, variably folded and metamorphosed to lower greenschist facies. Figure 2 is a geologic map of the Vrede structures, and Figure 3 provides stratigraphic columns for each dome.

The Ombombo Subgroup forms the bulk of the Vrede stratigraphy. The southern dome is cored by 50+ m of Ombombo-1 Formation (Fm.) black-maroon limestones (partially dolomitized) and sandstones. The limestones/dolostones of this unit form the resistant ridges that contain metre-scale refolded folds at location M9 (Fig. 2). A 15+ m thick lens of diamictite/tectonite lies in the hinge of a 150 m wavelength, E-W trending fold at M9. The northern dome shows less structural relief than the southern dome and does not expose Ombombo-1 Fm. rock.

The Ombombo-2 Fm. varies significantly across the domes. In the northern dome, the Ombombo-2 Fm. is a 100+ m thick unit of nearly continuous coarse-grained, polymictic conglomerate (Malloof, 1998), broken only by thin sandstone beds and rare dolostone ribbon beds. In the southern dome, the Ombombo-2 Fm. contains
thin, medium-grained conglomerate beds separating thicker beds of fine-medium sandstone and dolostone ribbons.

The Ombombo-3 and Ombombo-4 Fm. are lithologically consistent across the domes, displaying two or three parasequences containing pinkish red *Tangasia* stromatolite biostromes (Semikhatov, 1962) with ooids and dolostone ribbons. The silicified ooid beds lie parallel to bedding and serve as useful marker horizons. A volcanic ash layer near the top of Ombombo-3 in a stratigraphically correlative section 150 km to the north has a U-Pb zircon age of 759 ± 3.5 Ma (Fig. 3; Hoffman et al., 1998D).

The Abenab Subgroup is extremely thin in the Vrede domes. The Chuos Fm. glaciogenic diamictite marks the base of the Abenab Subgroup and rests unconformably on the Ombombo-4 Fm. Without the presence of the overlying Rasthof Fm., the Chuos Fm. cannot be distinguished conclusively from the overlying Ghaub diamictite of the Tsumeb Subgroup. However, where the Rasthof Fm. is present, the Chuos Fm. is a pinkgrey, carbonate-clast, carbonate-matrix diamictite with very rare striated basement clasts. For the Rasthof Fm., only the lowermost 4 m of black, finely laminated rhymites with rolver algal mats was preserved prior to the downcutting of the Ghaub glaciation (Fig. 3).

The Ghaub Fm. marks the base of the Tsumeb Subgroup and cuts into the Abenab and Ombombo Subgroups creating an unconformable contact with 6+ m of local relief. The Ghaub Fm. is a glaciomarine diamictite characterized by large (up to 2 m diameter) carbonate and basement granitoid/gneiss dropstones within a fine siltstone or carbonate matrix. In the northern dome, the unit contains only rare <5 cm diameter dropstones in the siltstone diamictite, while in the southern dome, the unit is packed with large and lithologically diverse dropstones.

Along the western edge of the Vrede domes, an up to 2.8 m thick green ash bed occurs between the Ghaub and the Maieberg Formations. The ash is silicified and ferruginized, perhaps because of its proximity to the Mulden-Tsumeb exposure surface. Four zircon grains were separated from the ash unit for U-Pb geochronology. Unfortunately, the grains gave upper concordia intercept ages of 1.7-1.9 Ga and lower intercept ages of 0.51-0.52 Ga (S.A. Bowring, pers. com., 1998). The zircons are probably detrital grains that were affected by Pan-African Pb-loss.

Where the ash unit is not present, the Ghaub Fm. grades almost conformably into Maieberg Fm. dolostone rhymites characterized by distinctive undulating waves of 0.5-2 cm wide isopachous cement, 10-200 cm in wavelength and 5-100 cm in amplitude. The Maieberg cement layer grades into variably dolomitized limestone rhymites, followed by massive recrystallized dolomite with calcite vugs up to 1 m in diameter.

The outermost shell of the Vrede domes consists of Mulden Gp. siltstones, phyllites, quartzites,feldspathic quartz arenites, quartz-pebble conglomerates and dolomite-clast breccias. A highly ferruginized and silicified subaerial unconformity is present where the Mulden Group truncates the Maieberg Formation.

The Structure of the Vrede domes

At the map-scale, 1-2 km wavelength folding of the thick and competent Ombombo 2, 3, 4 Fm. conglomerates and dolostones created a 1.5 km wide and 4 km long pair of lobate domes separated by a keel-shaped synclinal basin (Fig. 2). Associated Otavi Group siltstones and fine-grained sandstones are deformed more passively around folded dolostone and conglomerate horizons, leading to map-scale layer thickness variations in the less competent units. The less competent siltstone and limestone units contain the metre-scale, multiply deformed folds and cleavages that are the subject of the remainder of this paper.

Cleavage

The Otavi Group carbonates rarely preserve a cleavage, and when they do, it is spaced, discontinuous and often just a series of stylolitic discolorations (Alvarez et al., 1976). The carbonates never contain two cleavages in hand sample. Fortunately, the Ombombo carbonates are closely associated with siltstones and sandstones that contain one and often two sets of penetrative cleavage. In some localities, the intersection of the two cleavages leads to typical pencil-shaped debris (e.g. M9). In other locations, the cleavages interact to create an older, tightly spaced crenulation cleavage accommodating large amounts of strain, and a younger, spaced, planar cleavage accounting for relatively less volume loss (e.g. M20). Occasionally, a thin sandstone or dolostone bed within a siltstone matrix will preserve a fold train that displays the geometric and chronologic relationship between the folds and the cleavages.

Cleavage formation in the Otavi rocks of the Domes was accomplished, at least partially, by pressure dissolution. Even in siltstones, insoluble clay and iron residues remain on the cleavage surface and no mica growth is visible. The older cleavage tended to remove the soluble material to accommodate shortening, making it difficult for the younger cleavage to develop because of the dearth of water and soluble minerals after the first deformation. However, when one of the two cleavages is not present, the cleavages are not physically distinctive in hand sample. Quartz veins are often present, but it is difficult to tell whether they represent reprecipitation of material mobilized by pressure dissolution, or whether they are related to other processes.

If granite diapirism was the cause of doming, a single, nearly horizontal cleavage inclined away from the core of the dome would be expected. The common occurrence of two sets of mutually perpendicular penetrative cleavage, each set axial-planar to a group of physically
distinct folds, supports the multiple-event, superposed folding hypothesis. Outcrop-scale relationships between multiple cleavages shed light on the sequence of deformational events within the Vrede domes.

Outcrop-scale evidence of three discrete folding events

Siltstones along the central north-south axes of the Vrede domes tend to preserve two cleavages. The two cleavages intersect at 80-90° and display obvious cross-cutting relations. The \(S_1 \) cleavage is tightly spaced, penetrative and generally strikes E-W. The \(S_2 \) cleavage is widely spaced (up to 1-2 cm), nearly planar, variably penetrative strikes consistently ~160° and dips ~60°.

At M20 (Fig. 2) and in the region along the axis of the keel-shaped syncline, \(S_1 \) is sheared into S-shaped micro-folds between the \(S_2 \) cleavage (Fig. 4). Towards the east and west flanks of the domes, \(S_1 \) becomes discontinuous and eventually disappears, while \(S_2 \) becomes progressively more closely spaced and continuous.

It is possible to assign both \(S_1 \) and \(S_2 \) to a distinct set of folds (\(F_1 \) and \(F_2 \) respectively), based on axial-planar cleavage relationships. Measurable \(F_1 \) folds are rare, but where preserved, appear as stranded dolostone hinge zones ~5-20 m across with attenuated limbs (Fig. 5). \(F_1 \) folds trend approximately E-W to ENE-WSW, verge to the north, and are gently (0-20°) plunging (Fig. 7b). Without exception, the \(F_1 \) folds preserve relatively undisturbed axial-planar \(S_1 \) in their hinges, while \(S_2 \) is either crenulated by \(S_1 \) or not present at all outside of the hinge zones (Fig. 5). \(S_2 \) transsects both limbs of \(F_1 \) folds (Fig. 5, 7c). \(F_2 \) folds are best developed along the N-S central axis of the domes (e.g. M20, M9).

\(F_2 \) folds are variable in style but are always smaller in scale, more regularly developed throughout the domes and more steeply plunging than \(F_1 \). For example, at M9, \(F_2 \) form as 0.5-2 m wavelength N-S trending folds in the attenuated limbs of a 50 m wavelength \(F_1 \) fold train (Fig. 7c). In thick siltstones, where there are no competent dolostone horizons, \(F_1 \) deforms \(S_1 \) into 0.25-1 m wavelength N-S trending folds. The \(F_2 \) folds exploit the more regular and closely spaced \(S_1 \) fabric for layer-parallel slip, deforming the original bedding planes as passive markers (Figs. 6, 7b, c).

In rare locations, clustered in the region of the keel-shaped syncline (M20, M54), entire outcrops of \(F_1 \) and \(F_2 \) folded massive siltstone are refolded into broad, 5 m-wavelength, 1 m-amplitude, E-W trending, N-verging folds (\(F_3 \)). During \(F_1 \) folding, flexural slip along the \(S_1 \) planes sheared \(S_2 \) planes into sigmoidal microfolds (Fig. 4).

Summary of deformational history

Three discrete deformational events are visible at outcrop-scale (\(D_1 \), \(D_2 \), and \(D_3 \); Table 1). The chronology of deformation recorded at outcrop-scale is assumed to be consistent with, and representative of, the map-scale structural history (Ramsay and Huber, 1987; Davis and Reynolds, 1996, Passchier and Trouw, 1996). This approach is supported by the similarities in the relative orientation of cleavages with respect to outcrop-scale and map-scale folds.

It is interesting to note that none of the outcrop-scale structures show the Type-1 basin and dome interference pattern so obvious in the map-scale expression of the
thick competent units such as the Ombombo 2, 3 and 4 Fm. that control the geometry of the Vrede structures (Fig. 2). Younger deformations in less competent siltstones exploit a tectonically developed set of nearly uniformly dipping layers (S1) rather than the primary bedding (S0) (Figs. 4, 5 and 6). In Figure 7, a model is presented for the sequence of contractional events that may be representative of outcrop-scale deformation in less competent units throughout the domes.

Implications for Regional Tectonics

Tectonic Setting

The Damara-Kaoko-Gariep Orogen is a late Pan-African (560-500 Ma) trench-trench-trench triple junction recording the simultaneous convergence of the Congo, Kalahari, and Rio de la Plata cratons (Fig. 8; Hoffman, 1996; Prave, 1996; Hoffman, 1991). Trench sedimentation (Kukla and Stanistreet, 1991), formation of the Khomas accretionary prism (Fig. 1), and south-verging fold belts (Miller, 1983) suggest that the Congo craton was the upper plate with respect to the Kalahari craton. Andean-type arc magmatism in the Camaqua retro-arc basin of southern Brazil (Gresse et al., 1996) and East-verging fold belts (Germ and Gresse, 1991; Coward, 1983) suggest that the Congo craton was the lower plate with respect the Rio de la Plata craton (Fig. 8; Hoffman, 1996). Kinematic indicators imply that collisions along each arm of the triple junction were left-lateral oblique (Fig. 8, 9a; Coward, 1983). One of the major problems that remains unsolved involves the relative timing of ocean closures and continental collisions between the three plates.

The timing of continental collision between the Congo, Kalahari, and Rio de la Plata cratons

In the Vrede domes, outcrop-scale crosscutting relationships between genetically linked folds and cleavages have distinguished a chronological sequence of deformational events for the domes (Table 1). In order to attach these phases of deformation to specific tectonic events, structures in the Vrede domes are linked with previous fold/cleavage style and relative timing observations from structures along the Outjo and Kaoko thrust belts (Table 2). Then, the change in strength of each chronologically distinct set of structures with their relative distance from the inland and coastal de-

Table 1: Summary of the chronology and style of deformation in the Vrede domes.

<table>
<thead>
<tr>
<th>Deformational Phase</th>
<th>Outcrop-scale style of deformation</th>
<th>Map-scale expression (interpretation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Large (3-100 m wavelength) E-W trending, shallowly plunging open folds (F1) and a well-developed, steeply dipping, closely spaced axial-planar cleavage—F1 and S1 are typically strongly refolded/rotated by D2.</td>
<td>Folded Olavi Gp. sediments into a broad E-W trending antithetic-synclinal-anticline train with cuspatate-lunate geometry.</td>
</tr>
<tr>
<td>D2</td>
<td>Small (0.5-2 m wavelength), tight, steeply plunging, N-S trending folds (F2) in S1 layering. F2 folds are associated with a variably spaced axial-planar cleavage that dips to the west—F1 and S1 are consistently oriented throughout the domes and are rarely deformed by D3.</td>
<td>Folded E-W trending antithetic-synclinal-anticline into a Type-1 NE-verging basin and dome structure (Fig. 2). The Type-1 two-dimensional interference pattern is the result of discrete D1 and D2 buckling phases interfering at nearly 90° angles (Ramsay, 1967; Theissen, 1980; Theissen, 1986).</td>
</tr>
<tr>
<td>D3</td>
<td>Rare E-W trending open F3 folds—style and degree of development vary over short distances due to the complex structural grain that had developed after D1 and D2. Renewed slip along F2 planes shears S1 planes into sigmoidal macro-folds.</td>
<td>Pushed southern dome further into northern dome asymmetrically, squeezing intervening syncline into the shape of a lens and developing northern sense of vergence in both domes.</td>
</tr>
</tbody>
</table>
formation fronts will suggest which tectonic event is responsible for each set of structures.

Along the coastal belt, Coward (1981) identified predominantly N-S trending structures in the north which experience an abrupt 90° change in trend near Khorixas (Fig. 1), about 120 km east of the Vrede domes. The NE-SW (D1) and N-S (D2) trending structures weaken systematically to the east (Coward, 1983) and D1 structures appeared before collision along the inland branch began (Miller, 1983). Therefore, it is suggested that D1 and D2 structures are related to deformation focussed along the coastal belt associated with closure of the Adamastor ocean.

In the Vrede domes and further east in the Outjo thrust belt (Miller, 1983; Coward, 1983), D1 and D2 were weakly deformed by an E-W trending D3. Southeast of the domes within the Swakop zone of the inland belt, intense N-S directed shearing and folding are observed to rework an older structural grain (D1 + D2; Coward, 1983; Miller, 1983; Porada et al., 1983). Coward (1983) and Stanistreet et al. (1991) noted that the intensity of this deformation weakens rapidly with distance from the inland belt and attribute the shortening to the closure of a narrow (Meert et al., 1995) Khomas sea. Coward (1981) concluded that deformation related to the closure of the Khomas sea is present only as a weak E-W trending overprint along the southwestern margin of the Congo craton (including the Vrede area). Therefore, D3 in the Vrede domes likely represents a distal pulse of N-S shortening related to the collision of the Congo and Kalahari cratons.

The proposed chronology is consistent with 40Ar/39Ar mineral cooling histories extracted from the 547-543 Ma Gariep belt (Frimmel and Frank, 1998). The tectono-thermal evolution of the Gariep belt suggests earliest closure of the northern Adamastor Ocean, followed by destruction of the Khomas Sea, and succeeded by closure of the southern Adamastor ocean (Gariep belt) (Frimmel and Frank, 1998). Tectonostratigraphic studies within the Damaran Orogen, however, suggest that either the Khomas sea closed before the Adamastor ocean (Stanistreet et al., 1991) or vice versa (Prave, 1996).

The evolution of the stress field at the junction of the coastal and inland belts

Why did ocean closure along the nearly N-S oriented Kaoko margin give rise to an initial phase of locally E-W trending structures (e.g. in the Vrede domes) followed by the development of N-S trending structures? Coward (1981) did not recognize a consistent interference pattern between the two structural trends, and considered the entire coastal belt to represent a single

Table 2: Synthesis of timing-of-deformation data from the Outjo and Kaoko thrust belts. D0 in the left column are deformation episodes referred to in this contribution. D0 is discussed further because there is no evidence for pre-Mulden deformation in the Vrede domes. D0 enclosed in parentheses within each entry of the table are the deformation episode labels used by the authors in previous publications.

<table>
<thead>
<tr>
<th>Event</th>
<th>Local or regional variations</th>
<th>Deposition or structures</th>
<th>Post-dates event</th>
<th>Pre-or post-collisional deformation</th>
<th>This paper’s Deformation episode</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Local: open to tight, upright to northward verging, E-W trending folds predating Mulden Gp. deposition (D2)</td>
<td>NE-SW trending formations</td>
<td>NE-SW trending, SE-verging asymmetric folds; Deformation strongest in the E-W trending alignments along the coastal belt (D2)</td>
<td>E-W trending folds and discontinuous axial-plane cleavage post-dating Mulden Gp. deposition</td>
<td>E-W trending folds and no cleavage development</td>
</tr>
<tr>
<td>D2</td>
<td>Regional: cleavage forming event, followed by NE-SW trending folds; Post-dates Mulden Gp. deposition</td>
<td>NE-SW trending, SE-verging asymmetric folds; Deformation strongest in the NE-SW trending alignments along the coastal belt (D2)</td>
<td>NE-SW trending, SE-verging asymmetric folds; Deformation strongest in the NE-SW trending alignments along the coastal belt (D2)</td>
<td>E-W trending folds and discontinuous axial-plane cleavage post-dating Mulden Gp. deposition</td>
<td>E-W trending folds and no cleavage development</td>
</tr>
<tr>
<td>D3</td>
<td>N-S trending, W-verging chevron folds; Post-dates the Zemissenia fan (570 Ma)</td>
<td>N-S trending, W-verging chevron folds; Post-dates the Zemissenia fan (570 Ma)</td>
<td>N-S trending, W-verging chevron folds; Post-dates the Zemissenia fan (570 Ma)</td>
<td>N-S trending, W-verging chevron folds; Post-dates the Zemissenia fan (570 Ma)</td>
<td>N-S trending, W-verging chevron folds; Post-dates the Zemissenia fan (570 Ma)</td>
</tr>
<tr>
<td>D4</td>
<td>Gentle, ENE-WSW trending folds and vertical cleavage; Post-dates the Kaoko thrust (495 Ma)</td>
<td>NE-SW trending ENE-WSW trending folds and vertical cleavage; Post-dates the Kaoko thrust (495 Ma)</td>
<td>NE-SW trending ENE-WSW trending folds and vertical cleavage; Post-dates the Kaoko thrust (495 Ma)</td>
<td>NE-SW trending ENE-WSW trending folds and vertical cleavage; Post-dates the Kaoko thrust (495 Ma)</td>
<td>NE-SW trending ENE-WSW trending folds and vertical cleavage; Post-dates the Kaoko thrust (495 Ma)</td>
</tr>
</tbody>
</table>

Fig. 8: Pan-African orogeny related to the assembly of Gondwana (after Hoffman et al. 1999 and references therein; Kross, pers. com., 1999). The domes are located at the junction of the Kaoko (coastal) and Damara (inland) belts between the Congo, Río de la Plata, and Kalahari cratons. The Gariep belt separates the Kalahari and Río de la Plata cratons and joins the coastal and inland belts to form the third arm of the triple junction. The Congo craton was the upper plate with respect to the Kalahari craton but was the lower plate with respect to the Plato craton. Subduction along each boundary was accompanied by a component of left-lateral slip. SF: San Francisco craton.
phase of differential shortening related to the closure of the Adamastor ocean and continental collision along the coastal belt. Coward (1981) went on to suggest that the change in structural trend was related to the tectonic evolution of the inland branch. During ongoing collision along the coastal belt, northward subduction of the Khomas sea commenced (Fig. 9a). Subduction of the Khomas sea ocean floor beneath the Congo craton generated large volumes of granite in the Swakop zone and the Outjo thrust belt (Fig. 1). Heat from the intruded granite weakened the lithosphere along the inland branch. This weakening of the southern margin of the Congo craton led to differential E-W ductile shortening and a counterclockwise rotation of structural trends (Fig. 9b). This interpretation then predicts that D\textsubscript{1} was E-W directed and that ongoing deformation led to a 90° counterclockwise rotation of originally N-S trending D\textsubscript{1} structures (Fig. 9b). Thus, D\textsubscript{2} would represent a renewed pulse of E-W directed shortening, refolding the E-W trending D\textsubscript{1} structures across N-S trending axes. This model is consistent with the observation that D\textsubscript{1} structures are only locally E-W trending (Coward, 1983) and that D\textsubscript{2} structural orientations are frequently controlled by the shape and location of basement inliers which may have acted as individual rigid indentors during differential shortening. However, as Carey (1955) asserts, Coward’s oroclinal explanation for the changing trend of the coastal belt would imply greater degrees of shortening and the unroofing of deeper structural levels along the southern Congo craton. The oroclinal hypothesis also predicts an increasing degree of horizontal extension towards the outer arc of the bend in the mountain belt. Mapping in the Swakop zone (Miller, 1983; Stanistreet \textit{et al.}, 1991) and in the narrow NW-SE window of Otavi Group rocks just north of the Zerrissene fan (Hoffman, pers. com., 1998) does not show evidence for widely varying degrees of crustal shortening or horizontal extension.

Alternatively, a similar 90° rotation of D\textsubscript{1} structures in the Vrede domes region could be accomplished if the southwestern Congo craton acted as a discrete rotating crustal sliver (Freund, 1970; Nur \textit{et al.}, 1986; Nelson and Jones, 1987; Sylvester, 1988; Fig. 9c). According to Nur \textit{et al.} (1986), the 90° rotation of a crustal block requires that the block is bound by multiple sets of parallel strike-slip faults, where each set of faults has rotated less than 45° (Fig. 9d). The block rotation hypothesis is attractive because, unlike the oroclinal model, it does not predict an increasing degree of horizontal extension towards the outer arc of the bend in the mountain belt (Hoffman, pers. com., 1999). Unfortunately, such variably rotated strike-slip faults have not been observed to bound the southwestern Congo craton. A second test of the rotating crustal block or oroclinal hypotheses would be to document palaeomagnetic rotations by dating palaeomagnetic poles from nearby syn-tectonic granitic intrusions (e.g. Nelson and Jones, 1987; Beck, 1998).

Two other models may satisfactorily explain the rotation of structural trends between D\textsubscript{1} and D\textsubscript{2} without requiring the 90° rotation of crustal elements. Most simply, McKenzie and Morgan (1969) predict that trench-trench-trench triple junctions are inevitably unstable. Using relative plate velocity vectors with directions based on the sinistral-oblique nature of convergence along each trench and with arbitrary magnitudes, Figures 9 a and e indicate that the Kaoko-Damara-Gariep triple junction is indeed unstable. As the plates move, the junction will be unable to retain its geometry and the relative motion of the plates will have to adjust accordingly (McKenzie and Morgan, 1969; Nitsuma, 1996). In order to reach a stable triple-point configuration, the Congo-Rio de la Plata plate boundary (CP) must rotate clockwise into parallelism with the Kalahari-Rio de la Plata plate boundary (KP), forming one long transform fault (Figs. 9 a and e). Perhaps the differential clockwise rotation of the three plates varied with time as the plate boundaries adjusted towards this more stable orientation. The complex evolving stress-field associated with the variable clockwise rotations of three interacting plates may have led to the 90° change in structural trend between D\textsubscript{1} and D\textsubscript{2} in the Vrede area.

A fourth explanation for changes in orientation of D\textsubscript{1} and D\textsubscript{2} structures involves the existence of an irregular coastal margin. Thomas (1983, 1990) used the southern Appalachian example to describe how the trace of an orogenic belt may be inherited from the geometry of the earlier rifted margin. Irregular margins composed of promontories and embayments result in diachronous collisions and rotations of the stress field (Figs. 9 f, g and h). Indeed, Porada \textit{et al.} (1983) suggested that the Kamanjab inlier extends to the coast (Figs. 1, 9 a, f, g and h). The Kamanjab inlier (1.7-2.0 Ga basement) could act as such a cold, rigid lithospheric promontory around which the trace of Kaoko structures would rotate (Vauzech \textit{et al.}, 1994). If the collision along the Kaoko margin closed the Adamastor Ocean like a zipper around an euler pole located well north of the Kamanjab inlier (Fig. 9a), as stratigraphic (Porada, 1989; Stanistreet \textit{et al.}, 1991; Germs and Gresse, 1991) and 40Ar/39Ar thermochronology suggests (Frimmel and Frank, 1998), then the Kaoko collision would have begun in the north and propagated southwards (Figs. 9 a and f). Although plate convergence is E-W, the initial collision in the north (D\textsubscript{2}) would have been strongly oblique, with a component of N-S directed stress across the WSW-ENE trending northwestern edge of the Kamanjab inlier (Fig. 9f). As the zipper closed southward beyond the NNW facing embayment and around the W-facing promontory, compressional structures (D\textsubscript{2}) would have assumed a N-S trend (Fig. 9g).

This hypothesis can be tested directly by checking to see if the Kamanjab inlier does extend to the coast with the proposed geometry. In fact, the Zerrissene fan (Fig. 1) deposits that currently cover the alleged extension of the Kamanjab inlier are deep water turbidites that may have been deposited on oceanic crust (rather than
Figure 9: Models for the 90° rotation of structural trends between D1 and D2 during Kaoko orogenesis. The legend in (a) is relevant throughout this figure. (a) Simplified map of the triple junction between the Rio de la Plata, Congo, and Kalahari cratons. Zipper indicates diachronous E-W directed closure of the Adamastor ocean (closing progressively from north to south) around an Euler pole to the north of the diagram; (b–h) represent variable magnifications of the dome region at the junction of the inland and coastal belts (dashed boxes in (a)); (b) Orocline hypothesis (after Coward, 1981): The first phase of deformation (D1) is E-W directed. During progressive E-W shortening, the F1 fold axes are rotated 90° counterclockwise into shortening-parallel orientation. A second pulse of E-W directed shortening (D2) will fold E-W trending F1 axes across N-S trending F2 axes; (c, d) Block rotation model (after Nur et al., 1985): The first pulse of shortening (D1) is E-W directed and forms N-S trending folds (F1). Progressive D2 shortening activates a set of parallel strike slip faults oriented approximately 60° from D1. (e) Slip on the faults causes counterclockwise block rotation. The original faults will accommodate rotation until relative normal stress gets too high and slip is no longer energetically favorable. At this point, a second set of faults will form to accommodate block rotation, while the original faults lock (d). New fault sets would continue to develop until the crustal slice that contains the domes rotated 90°. Then a second pulse of E-W shortening (D2) would fold the E-W trending F1 axes around N-S trending F2 axes; (e) A representation of the triple junction in a relative plate velocity field shows that it is necessarily unstable. Assuming that the left-lateral component of slip along each plate boundary is contemporaneous, migration of the triple junction will induce clockwise rotation of the Congo craton. C: Congo craton, K: Kalahari craton, P: Plato craton, CP: Congo-Plata plate boundary, KP: Kalahari-Plata plate boundary, KC, Kalahari-Plata plate boundary; (f, g, h) The existence of a basement promontory (e.g. the southwestern extension of the Kamanjab inlier) causes a rotation of the stress field as the Adamastor ocean closes diachronously from north to south (a). The first pulse of deformation (D1) forms E-W trending structures parallel to the north-facing edge of the Kamanjab inlier (f). The next phase of deformation (D2) builds N-S trending structures parallel to the west-facing edge of the Kamanjab inlier as the Adamastor ocean begins to close around the basement promontory (g). The final phase of contraction (D3) is associated with the closure of the Khomas sea and forms E-W trending structures parallel to the southern margin of the Kamanjab inlier (h).
debris flows deposited on a basement high) (Stanistreet et al., 1991). By examining Nd and Pb isotopes in syn/post-tectonic granites, we should be able to determine whether the granites traveled through 2.0-1.7 Ga granitic basement or through an accreted sliver of oceanic crust (Hoffman, pers. com., 1998).

Perhaps the boldest assumption made in this contribution and in previous work is that fold orientations and vergences describe relative plate motions and collision geometries directly. This is a risky assumption to make considering that pre-existing structure (Thomas, 1990; Vauchez et al., 1994) and extensional collapse (Dewey, 1988) are only two of the many factors that may cause folds to mask true relative plate motions. Nevertheless, the striking correlation between outcrop-scale Vrede dome structures and the map-scale structures observed along the coastal and inland belts indicate that something in the tectonic evolution of NW Namibia is systematic and perhaps related directly to the relative movements of the Congo, Rio de la Plata and Kalahari plates.

Conclusions

The Vrede domes provide a rare opportunity to examine deformed Otavi Gp. sediments at the junction of the Kaoko and Damara belts. Unlike domal structures observed in the Outjo thrust belt and elsewhere in the Damara orogen, the Vrede domes are not (1) the result of post-tectonic granitic diapirism, nor are they (2) the expression of oblique convergence and lateral tectonic escape along a mid-crustal detachment. The Domes were formed by the interference of three discrete folding events, D1, D2, and D3. If one assumes that fold orientations and vergences are valid data for the prediction of relative plate motions, then the discrete deformational episodes in the Vrede domes suggest a chronology for the inland and coastal orogens. Coupled with structural observations from the Kaoko (Guj, 1970; Porada et al., 1983, Porada, 1989; Coward, 1983; Dür and Dingeldey, 1996) and Outjo (Frets, 1969; Porada, 1979, 1989; Porada et al., 1983; Coward, 1981, 1983; Miller, 1983; Weber et al., 1983) thrust belts, it is concluded that D1 and D2 reflect the closing of the Adamastor Ocean and subsequent Kaoko orogeny. Closure of the Khoas Sea and collision along the inland Damara branch (D3) followed.

Acknowledgements

This work was funded by Harvard University, the Geological Survey of Namibia and a 1997 Carleton College Independent Research Fellowship entitled Neoproterozoic tectonics and environments: An example from Namibia. Additional research funds were provided by the 1997-1998 Carleton College Duncan Stewart Fellowship. Field observations were made by Farid Chemale, Ben Goscombe, Pippa Halverson, Charlie Hoffmann, Paul Hoffman, Cees Paschier, Gaddy Soffer and Rudolph Trouw during the 1997 summer field season. Useful reviews of the manuscript were made by Guy Charlesworth, Ebbe Hartz, Alfred Kröner and Roy Miller. The author is indebted to Dave Bice, Bereket Haileab, Cin-ty Lee and John Shaw for many valuable discussions, and to Paul Hoffman for ongoing support since the earliest stages of this project.

References Cited

Porada, H. 1979. The Damara-Ribeira Orogen of the Pan-African-Brasiliano cycle in Namibia (South West Africa) and Brazil as interpreted in terms of continental collision. *Tectonophysics*, 57, 237-265.

Superposed folding at the junction of the inland and coastal belts, Damara Orogen, NW Namibia